Аннотация учебной дисциплины «Практикум по калибровочной теории классического поля»

Направление подготовки: 011200.68 Физика

Профильная направленность: Теоретическая физика

Форма обучения: очная

Курс: 1

- 1. Целью освоения дисциплины «Практикум по калибровочной теории классического поля» является выработка у студентов навыков построения лагранжианов на основе принципа локальной калибровочной инвариантности, вычисления масс векторных и фермионных полей на основе спонтанного нарушения симметрии, вычисления S-матричных элементов электрослабых процессов в рамках теории Вайнберга-Салама, вычисления сечений и вероятностей процессов.
- **2.** Дисциплина «Практикум по калибровочной теории классического поля» является составной частью модуля "Специальный физический практикум" базовой части общенаучного цикла.
- 3. В результате освоения дисциплины обучающийся должен:

Знать:

- -о принципе локальной калибровочной инвариантности и удлиненной ковариантной производной;
- -о методе построения взаимодействия фермионов с векторными полями на основе локальной калибровочной произвольной группы Ли;
- -о механизме спонтанного нарушения симметрии.
- -основные лагранжианы взаимодействия квантовых полей;
- -калибровочные теории взаимодействия кварков и глюонов;
- -модель Вайнберга-Салама единого электрослабого взаимодействия.

Уметь:

- -строить лагранжианы на основе принципа локальной калибровочной инвариантности;
- -строить лагранжианы взаимодействия векторных полей;
- -вычислять массы векторных и фермионных полей на основе спонтанного нарушения симметрии.

Владеть:

- -навыками построения калибровочно инвариантных билинейных и трилинейных структур по полям:
- -навыками вычисления S- матричных элементов электрослабых процессов в рамках теории Вайнберга-Салама.
- 4. Общая трудоемкость дисциплины составляет 3 зачетные единицы, 108 часов.
- 5. Содержание дисциплины:

№ п/п	Раздел дисциплины
1.	Введение.
1.1	Классическая электродинамика как пример калибровочной теории. Удлиненная производная. Принцип локальной калибровочной инвариантности.
2.	Представление калибровочных групп симметрии.
2.1	Набор фермионных безмассовых полей. Инвариантность относительно глобальной группы симметрии.
2.2	Алгебра генераторов группы Ли. Структурные константы.

	T
2.3	Удлиненная производная. Лагранжиан взаимодействия фермионов с векторными полями.
3.	Самодействие векторных полей.
3.1	Статус векторных полей. Лагранжиан свободных векторных полей.
3.2	Локальный калибровочно инвариантный лагранжиан векторных полей.
3.3	Лагранжиан взаимодействия векторных полей.
4.	Спонтанное нарушение произвольной симметрии.
4.1	Спонтанное нарушение симметрии на примере дискретной группы. Спонтанное нарушение симметрии непрерывной группы. Теорема Голдстоуна.
4.2	Генерация массы векторного поля на примере спонтанного нарушения симметрии группы U(1).
5.	Модель Вайнберга- Салама.
5.1	Модель Вайнберга-Салама. Описание электромагнитных и слабых взаимодействий. Представление фермионов в модели Вайнберга- Салама.
5.2	Локальная калибровочная симметрия. Лагранжиан взаимодействия фермионов с векторными полями.
6.	Электрослабые взаимодействия.
6.1	Фотон, бозон. Угол Вайнберга.
6.2	Электродинамика, Z-взаимодействие, взаимодействие заряженных токов. Лагранжиан самодействия векторных полей.
7.	Спонтанное нарушение калибровочной симметрии и голдстоуновские бозоны.
7.1	Механизм спонтанного нарушения симметрии. χ - скаляр. Генерация масс векторных полей.
7.2	Юкавское взаимодействие.
7.3	Генерация масс фермионов.
1.5	T , T - T

6. Форма контроля: Зачет