Аннотация учебной дисциплины «Избранные вопросы релятивистской астрофизики и космологии»

Направление подготовки:011200.68 Физика

Профильная направленность: Теоретическая физика

Форма обучения: очная

Курс: 2

- 1. Дисциплина «Избранные вопросы релятивистской астрофизики и космологии» дает студентам дополнительные знания и умения в области релятивистской астрофизики и современной космологии.
- **2.** Дисциплина Избранные вопросы релятивистской астрофизики и космологии» является факультативной дисциплиной.
- 3. В результате освоения дисциплины обучающийся должен:

Знать:

- -элементы эволюции звезд в зависимости от их начальной массы;
- -реакции термоядерного горения в центре звезды,
- -основные следствия общей теории относительности;
- -Фридмановскую модель Вселенной.

Уметь:

- -оценивать время жизни Вселенной;
- -оценивать эффективную температуру излучения звезды;
- -оценивать температуру и давление в центре звезды;
- -оценивать время термоядерного горения в центре звезды;
- -оценивать время нейтринного излучения сверхновой с коллапсом центральной части.

Владеть:

- -навыками работы математическим аппаратом статистической физики в приложении к космологии;
- -навыками расчета квантовых процессов.
- 4. Общая трудоемкость дисциплины составляет 2 зачетные единицы, 72 часов.
- 5. Содержание дисциплины:

№ п/п	Раздел дисциплины
1	Ядерные реакции в звездах
	Типичные температуры в центре звезд Главной последовательности. Особенности
	термоядерной реакции горения водорода. Протон-протонный цикл Ганса Бете. Оценка
	интенсивности нейтринного излучения Солнца. Углеродно-кислородный цикл Ганса Бете в
	звездах Главной последовательности. Элементы нейтринной астрономии. Процессы излучения
	солнечных нейтрино. Методы детектирования нейтрино и чувствительность к потоку
	солнечных нейтрино.
2	Элементы эволюции звезд
	Оценка гравитационной, тепловой, вращательной и магнитной энергии звезд. Элементы
	эволюции звезд. Сверхновые. Белые карлики. Нейтронные звезды. Гравитационнный радиус.
	Черные дыры. Взрыв сверхновой с коллапсом центральной части. Оценка энергии, времен
	излучения и светимости нейтрино при взрыве сверхновой. Основные нейтринные процессы в
	Сверхновых. Чувствительность нейтринных установок к потоку нейтрино от сверхновых.
3	Элементы современной космологии

Модель Фридмана с космологической постоянной. Космологические параметры. Эволюция расширения Вселенной. Критическая плотность. Ограничения на космологические параметры из анизотропии реликтового излучения фотонов и данных по сверхновым типа Ia.

6. Форма контроля: Зачет